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In this paper a new method  is proposed for the calculation of  the impedance of  arbitrary electrodes 
containing noncylindrical pores and/or  having place-dependent impedances. The method is based 
on splitting up the pore and the surrounding material into N discs. For  the equivalent circuit of  
each disc a transmission line with constant  impedances is adopted. By matrix calculations the impe- 
dance of  the porous  electrode can be obtained. A comparison is made between this, very general, 
matrix method and a recursion method  developed by Keiser et al. for purely capacitive interface 
behaviour of  pores in an electrode material with negligible impedance. It is shown that the matrix 
method requires much smaller N-values owing to the use of  transmission lines for each disc. This 
makes it more  appropriate  to be used in curve fitting procedures. Moreover,  it is shown that the typi- 
cal behaviour  of  the pore impedance at low penetration depths is much better simulated with the 
matrix method.  Furthermore,  an at tempt is made to provide more general knowledge about  the impe- 
dance behaviour of  noncylindrical pores as a function of  the penetration depth of  the a.c. signal. 
Finally, the theory is enlarged using constant  phase elements instead of  capacities to describe the 
behaviour of  the electrode/electrolyte interfaces. 

1. Introduction 

Over the last thirty years different researchers have 
reported the calculation of the impedance of porous 
electrodes. De Levie [1-3] studied pores with a 
constant section in a material with negligible resis- 
tance. He justified the one-dimensional modelling of 
the electrochemical system. As a consequence, the 
impedance of the porous electrode could be described 
as a parallel combination of the impedances of the 
different pores. For the impedance of a single pore, 
a transmission line was adopted. It was shown that 
with decreasing frequency the current penetrates 
deeper into the pore, making it possible to obtain 
information on the pore shape from impedance 
measurements. 

Keiser et al. [4] calculated the impedance of non- 
cylindrical pores as a function of the penetration 
depth A of the a.c. signal (Fig. 1). They supposed the 
pores to be solids of revolution and calculated their 
impedance using a recursion formula. The electrode 
material was again assumed to have a negligible resis- 
tance. The disadvantage of this calculation method is 
the fact that the electrochemical system was not only 
geometrically, but also electrochemically, simplified. 
Geometric simplification consists of splitting the 
pore into N discs with height l /N  (l is the pore 
length) and disc-dependent radius r i (1 < i < N). 
Electrochemical simplification consists in the use of 
a combination of noninfinitesimal impedances as 
equivalent circuit for each disc, instead of using a 

transmission line with infinitesimal impedances for 
each disc. 

In this paper a new method is described for the 
calculation of the impedance of noncylindrical pores 
in electrodes with nonnegligible electrode impe- 
dance. The calculation method is based only on a 
geometrical simplification and is called the matrix 
method. In addition to recent literature [5-9] a 
variable pore section and the possibility of impe- 
dance changes over the pore depth are taken into 
account in this matrix method. 

In other papers the described method will be used to 
evaluate the impedance behaviour of both cylindrical 
and non-cylindrical scaled-up pores drilled in stainless 
steel (Part II, [10]) and of porous and sealed anodiza- 
tion layers on aluminium [11]. 

2. Model description 

2.1. Matrix method for the calculation of the pore 
impedance 

For the calculation of the impedance of porous elec- 
trodes in an electrolyte solution it is assumed that 
the pores are homogeneously filled with electrolyte. 
Moreover, the equipotential planes inside the electro- 
lyte and material phase are assumed to lie perpendi- 
cular to the pore axis. These assumptions are an 
extension of those made for electrodes with negligible 
resistance [3]. They allow one-dimensional modelling 
of the electrochemical system. 
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Fig. 1. Nyquist curves for the normalized pore impedance by Keiser 
et al. [4] (l is the pore length, ), is the penetration depth of the a.c. 
signal). 

The porous electrode, soaked with electrolyte, can 
be assumed to be a parallel combination of pores 
surrounded by an appropriate amount of electrode 
material. The translation of this system into an 
equivalent electrical circuit has to take into account 
that the impedance of the porous electrode can be 
seen as a parallel combination of the impedances of 
different pores. These can have different dimensions 
and theoretically even different shapes. 

It is assumed that an electrode with thickness d (cm) 
and surface area A (cm 2) contains a pore having 
the shape of a solid of revolution. The pore has a 
depth l (cm) and a radius r(x), which can change 
over the depth. The similarity between the electroche- 
mical system and the equivalent circuit is shown in 
Fig. 2. This was obtained by translating all the elec- 
trical and electrochemical phenomena into suitable 
impedances. 

In the equivalent circuit (Fig. 3) I stands for the 
total current through a section (A), Re is the electro- 
lyte resistance (f~), x the position coordinate (cm), l 
the pore depth (cm), Rs(x) the electrolyte resistance 
in the pore per unit length (f~cm-1), Zm(x ) the 
material impedance round the pore per unit length 
(f~cm-l), Z(x)  the interface impedance for a unit 
length of pore (acm),  ZI the impedance of the 
electrode surface round the pore mouth (f~), Zu the 
impedance of the pore base (f~), Zb the material 
layer impedance (f~), ira(x) and is(X) the currents 
flowing, respectively, into the electrode material and 
the electrolyte. The position dependence of the impe- 
dances Rs, Zm and Z can be due to the position depen- 
dence of the pore section and to that of the specific 
impedances. 

The calculation of the pore impedance Zp was 
carried out using a finite element approach. The 
elements were obtained by splitting the pore and the 
surrounding electrode material into N discs. These 
may have different heights, which was not the case 
for the model of Keiser et al. [4]. Material element i 
(1 < i <  N) lies between x = ai and x = hi, has a 
thickness li = bi  - ai and contains an electrolyte disc 
with radius r i. The surrounding material has a 
surface a r e a  A i = A -  7rr 2. The equivalent circuit of 
each of these elements is a transmission line, TL (i), 

I 

d 

r x  

Fig. 2. A transmission line as equivalent circuit for the impedance of 
an electrode with nonnegligible material impedance containing a 
pore with variable radius. 

with constant parameters Z(im ), Z (i) and R~ i) (Fig. 
4(a), ¢ is the potential difference across the interface 
(V)). Such a TL with constant parameters has 
already been described in the literature [5-9]. 

The inlet of the five gate TL (i) is characterized by 
the parameters I }  i -  1) ~(i- 1) and .(i- 1) l~h , from which 
all the currents and voltages inside TL (i) can be calcu- 
lated (Fig. 4(b)). As a consequence, the outlet para- 
meters I t  ) and ~b (i) can also be written as functions 
~¢r ( i -1 )  ~(i-1)  ~_.1 r ( i -1)  
U I  I S ~ t / )  ~ l l U  I m , 

z(,) C (i) 

= __s(i ) Z (i) 

0 

. (0 -s(i) ~(i) D ( i ) ( 1  _ c(i)) 

C (i) s(i) a,(i)7 (i) A~ k ~rn 

0 1 

X 

i}i- 1) 

q~(i I- 1) (1) 

Z m ( x ) d x  

I m (0) Z m ( x ) d x  i m Z m ( x ) d x  Irn I Z b 

I Re 

Re 

I s (0 )  R s ( x ) d x  i s R s ( x ) d x  I s I 
R s ( x ) d x  

Zp Zb I 

Fig. 3. Equivalent circuit for the measured impedance. 
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Fig. 4. (a) Splitting the pore into N parts means dividing the trans- 
mission line with variable parameters into N transmission lines with 
constant parameters. (b, c) Equivalent circuit adopted for disc i. 

with 

~ i ) =  i ( -z(i! ~ Z(~) 
k Z(im) + R!i)) and D ( i ) -  Z(im ) + R~i) 

(2, 3) 

S (i) = sinh and cosh(#) 
Since the pore is divided into N discs, 

. (i) 

Z 

0 ) - _S(;) x! -0 C(i) 

0 0 

D(i)(1 - c(i)) 

s(i) v(i)7(i) A~ k ~m 

[ i}0) 
x [ ¢ ; )  (6) 

It is worth noting that the product has to be taken 
from N to 1, i.e., from the end to the beginning of 
the pore. In symbolic notation Equation 6 is written as, 

I} N) = c~I (0) +/3q5 (0) + 7[  (7) 

~(N) ~- el}0) + q¢(o) + uI (8) 

Equations 7 and 8 contain four unknown parameters. 
Two other equations can be found from Ohm's law at 
the pore mouth and pore base (Fig. 3), 

¢(o) = Z,(I - i}0)) (9) 

¢(U) = Zui(s N) (10) 

Since all voltages and all currents are proportional to 
I, we can write, 

¢(i) = ¢(i). I (11) 

I}i)= I(si).I (12) 

The total impedance Zp of the pore embedded in the 
surrounding material is then given by 

N C (i) 1 i(s i) I}i_ ,)] zp  #N) _ F_., ..I,) l,) - = ~s Xk S(T) [ 2D(i) - - 
i=1 

N 
+ 4')D% (13) 

i=1 
From this expression, the impedance of a porous elec- 
trode can be calculated taking into account the 
parallel combination of the different pores. For the 
case of cylindrically shaped pores this is worked o u t  
in [5-8]. 

2.2. Comparison with the recursion formula of 
Keiser et al. [4] 

Keiser et al. [4] proposed a recursion formula for the 
calculation of the impedance of a noncylindrical 
pore in an electrode with negligible impedance 
(Z m = 0). The pore was supposed to have the shape 
of a solid of revolution and the interface impedance 
Z was taken purely capacitive. Moreover, both the 
electrode material around the pore mouth and the 
pore base were assumed to behave as insulators 
(IZt[ = oe, [Zu[ = c~). Using the assumptions made 
above, a comparison between the recursion method 
and the matrix method can be made. 

2.2.1. Recursion method. For the calculation of the 
pore impedance Keiser et al. divided the pore into N 
discs with height l /N and radius ri (1 < i < N). 
Each disc has its own electrolyte resistance and 
interface capacity. The standardized pore impedance 
Z,  (=Z! °)) can be found by using the recursion 
formula, 

--_1 1 (14) Z!  i- l )  
--Ng ¢4 1 1 2 1 

J 2-N (~rr) gi 4 ~i) 

Since the pore base behaves as an insulator 
(]Zu] ~ oe), the starting impedance of the recursion 
formula is given by 

1 
- 0  (15) 

Z!  N) 

The standardization mentioned above consists in 



IMPEDANCE OF NONCYLINDRICAL PORES-I 329 

dividing the pore impedance by the resistance of the 
electrolyte cylinder having the same mean radius r 
and depth l as the noncylindrical pore, 

Z! i) = z(i) (16) 
Ro 

Ro = psl (17) 
71-r 2 

Ps is the specific electrolyte resistance (f~ cm). 
In Equation 14 a dimensionless shape factor gi and 

the penetration depth A r of the a.c. signal are used, 
given by, 

r i 
gi = - (18) 

r 

1 r 
A r = ~ @psJC w (19) 

co is the circular frequency (rads q )  and Cw is the 
double layer capacity per unit surface (F cm-2). 

2.2.2. Matrix method. In the matrix method the pore is 
also divided into N discs with radius ri (1 < i < N) 
which can now have different heights li. The 
assumption that the electrode material has a 
negligible impedance (Z(m/) = 0, i = 1, . . . ,  N) 
simplifies Equation 6 to 

= p(N) 

L II z(,) 
i=N __T(i) A(k i) 

[ :}o) 
× Lo(O)] 

with 

A(i) 7 
_ T ( i )  "'k., / 

1 Z(') ] 

(20) 

A(;) /Z(i) :VU (21) 

and 

Z ( 0 =  Zw 
2rcr i (22) 

R~i)= Ps 
7rr2 (23) 

T ( i ) :  tanh ( 4 )  (24) 
k, Ak J 

u ( , / )  
P(N) = H cosh  ~ (25)  

i= 1 \/~k / 

A~ i) is the complex penetration depth of the a,c. signal 
in the ith disc. Z w is the specific interface impedance 
(f~cm2). After multiplication Equation 20 can be 
written as, 

In the case of an electrode with negligible impedance 

the impedance, Zb of the electrode surface around 
the pore mouth is connected parallel with the pore 
impedance. It is thus possible to take this impedance 
into account afterwards and suppose ZI to be 
infinite in the subsequent calculation. The boundary 
conditions are then, 

Is (°) = I (27) 

~)(N) = Z u I } N )  (28) 

Combining Equations 26, 27 and 28 and Zp = ¢(o)/i 
the pore impedance can be written as 

E t _ Z u O /  

Zp - r / -  Zvfl' (29) 

For the special ease of an insulating pore base 
(IZuI = oe) the pore impedance Zp and the standard- 
ized pore impedance Z, become 

/ 
OZ 

Z p -  y 

-1  c~' 
Z , -  

For a cylindrical pore 
respectively, reduced to 

z u c  + 
zp  = 

Z u S  + Z ~ C  

(30) 

R o /3' (31) 

Equations 29 and 30 are, 

(32) 

for a pore base with impedance Zv  and to 

C 
Zp = Z~ -~ (33) 

for an insulating pore base. 
In Equations 32 and 33 Zoo is the impedance of an 

infinitely deep cylindrical pore [1-3], 

Z~ = ~ (34) 

3. Discussion 

For the recursion method a purely capacitive interface 
was assumed. However, up to now no assumption was 
made concerning the interface of the pore in the 
matrix method. Assuming a capacitive interface and 
an insulating pore base, the standardized pore impe- 
dance Z. can be calculated for various pore geo- 
metries, both with the recursion method and the 
matrix method. 

Z,, given by Equation 14, depends only on 1/Ar, the 
pore geometry gi and the number of discs N. This 
means that for uniform pores the same standardized 
pore impedance is found, as a function of I/Ar. It 
can be shown that sufficient conditions for this 
property are that the specific interface impedance Z w 
(f~cm 2) is not a purely resistive constant-phase 
element (CPE, Zw = Qw = Q0,w (Jco) ~, -1  < a < 1 
and c~ # 0) and that the pore base is an insulator. In 
this case the real penetration depth Ar is given by 

/ (Qo,  wr'] cos ( a 4 )  (35) 
Ar = V k2psW~J 
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Fig. 5. Comparison between the analytically calculated normalized 
pore impedance and the one calculated for different N values with 
the recursion method (a = 1) for the case of a cylindrical pore. 
(A) Nyquist plot. (B) Bode phase plot. N: (a) 30, (b) 50, (c) I00, 
(d) 200 and (e) analytical solution. 

Experimental samples of  pores with CPE interface 
behaviour will be given in part  II. A purely capacitive 
interface, as is the assumption of  Keiser et al., results 
in a special CPE with a = l  and Q0,w= 1/Cw. 
Equation 35 then simplifies to Equation 19. 

Using Equation 35, the pore impedance, calculated 
with the matrix method as a function of  the frequency 
f or the circular frequency a;, can also be written as 
function of  1/A r. 

Keiser et al. claim that for simple pore geometries 
splitting the pore into 30 to 40 cells is sufficient. 
Since the impedance of  a cylindrical pore can be calcu- 
lated analytically, a justification of  this assertion can 
be made by calculating the impedance for different 
N-values (Fig. 5). It is seen that the curve found 
with the recursion formula for N = 30 is not going 
to the origin of  the coordinate system. It produces a 
serial resistance given by 1/Ng21. This resistance 
becomes zero if N is infinite. However, at high 
enough values o f / /Ar ,  thus very small penetration 
depths, the pore behaves as an infinitely deep cylin- 
drical one [2, 3]. The standardized and nonstandard- 
ized impedance are then, 

71- 

Z, ,~  = I1 + j t a n ( - a ~ ) ]  ~ (36) 

Zp, oe = Z , , ~ R  o (37) 

Since it is seen in Equation 35 that /~r is proportional 
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Fig. 6. Comparison between the normalized pore impedance 
(a = 1) for a conically shaped pore calculated with the recursion 
method (N = 30) and with the matrix method (N = 20). (A) 
Nyquist plot. (B) Bode phase plot. Key: (a) recursion, (b) matrix 
and (0) l/Ir in (A). 

to co -~/2 it is concluded that these impedances repre- 
sent a CPE with half the exponent of  Qw. As can be 
seen from Figs 5 to 8 this is the case for the pore impe- 
dance calculated using the matrix method (a = 1, 
resulting in a - 4 5  ° phase angle). However, when the 
recursion formula is used, the influence of the serial 
resistance is so big that the typical infinitely deep 
pore behaviour is hardly visible in the phase 
diagram for N-values proposed by Keiser et al. 

For  arbitrary pore geometries no analytical 
solution exists. For  a conical pore (r(1)= 0) the 
comparison between the impedance calculated with 
the recursion formula and that calculated with the 
matrix method is shown in Fig. 6. In Fig. 7 this is 
done for a pore with geometry b (see Fig. 9). It is 
shown in Fig. 8 that for a pore with a pore mouth 
much smaller than the pore base (case c of Fig. 9) 
the serial resistance becomes relatively large. Extrac- 
tion of  this serial resistance from the calculated pore 
impedance does not result in a correction. This 
would affect the limiting value of Re(Z,)  for 
I/Ar--* 0 which was found to depend on the pore 
geometry. In this we disagree with Keiser et al., who 
reported that: "Using an appropriate standardiza- 
tion of  the pore shape factor g(~) as given by 
Equation 18, always the same limiting value is 
reached for the real part of Z , . "  They illustrated 
this using Fig. 1. However, this figure is not correct. 
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Fig. 7. Comparison between the normalized pore impedance 
(c~ = 1) for a pore with shape b (Fig. 9) calculated with the 
recursion method (N= 30) and with the matrix method 
(N = 20). (A) Nyquist plot. (B) Bode phase plot. Key: as for Fig. 6. 

I t  is clear tha t  the real pa r t  o f  Z ,  can only be due to 
the resistance behav iour  of  the electrolyte inside the 
pore,  since the pore  wall was supposed to be purely 
capacitive. As a consequence,  a small s tandardized 
pore  radius g(~ = 0) at  the pore  m o u t h  increases the 
real pa r t  o f  Z ,  m u c h  more  than  the same pore  
radius g(~--- 1) at  the pore  base. This is due to the 
flattening o f  the a.c. signal f rom the top to the 
b o t t o m  o f  the pore  (Fig. 10). As a consequence,  
geomet ry  b (Fig. 9) results in a smaller real par t  o f  
Z, than geomet ry  c (gN- i+ 1 (C) = gi(b)). 

The limiting value o f  Re (Z , )  for  liar--+ 0 and 
c~ = 1 is found  to equal  a n u m b e r  that  only depends 
on the pore  form. This number  is called the 
geomet ry  cons tant  Ag and given by the weighted 
average of  rat ios V/ 

= = lira - -  V~ Ag lim R e [ Z .  l 1 N N - i + l _  

(38) 
with 

2 

Vii is the rat io of  the surface of  the circle which has a 
radius equal  to the mean  radius of  the cylinders i to 
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Fig. 8. Comparison between the normalized pore impedance 
(a = 1) for a pore with shape c (Fig. 9) calculated with the 
recursion method (N= 30) and with the matrix method 
(N = 20). (A) Nyquist plot. (B) Bode phase plot. Key: as for Fig. 6. 

N tO the surface o f  the ith cylinder. Accord ing  to 
Equa t ion  38 the surface rat io //1, at  the inlet o f  the 
pore,  has the biggest weight o f  all ratios, thus 
resulting in a geomet ry-dependent  real pa r t  o f  the 
s tandardized pore  impedance.  

Ag = 1/3 for  a cylindrical pore,  since all rat ios Vi 
are given by V/ /= I  (1 < i < N ) .  A pore  with 
nar rowing cross section has V,- < 1 (1 < i < N -  1) 
and VN = 1, resulting in Ag < 1/3, as can be seen in 
Fig. 7(A). A pore  with broadening  cross section has 
V / > I  ( l < i < N - l )  and VN=I,  resulting in 
Ag > 1/3, as can be seen in Fig. 8(A). This will be 
proved  experimental ly  in Par t  I1. 

allll 
'b'U 
 gll 

Fig. 9. Pores with different r(O)/r(l) ratios. The pores are drawn 
so that they have the same mean radius. (a) r(O)/r(l)= 1; 
(b) r(0)/r(l) = 10; (c) r(0)tr(l) = 0.1. 
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(a) 

(b) 

Insulator 

Fig. 10. View of the current flow in the pore filled with electrolyte as 
a function of decreasing frequency (i.e. increasing penetration 
depth). 

For  the calculation of  Ag it is more appropriate to 
use the matrix method than to use Equation 38, 
which is the result of  the recursion formula of 
Keiser et al. Using the matrix method, Ag is given 
by the real part of  the standardized pore impedance 
Z,  when a purely capacitive interface is assumed 
and l/Ar = 10 -2. For  a conical pore (Fig. 6(A), 
Ag = 1/12 ~ 0.0833) the matrix method provides 
Ag ~ 0.0834 for N = 100, whereas with Equation 38 
Ag ~ 0.0835 is found for N -- 2000. The calculation 
time is thus reduced 20 times when the matrix 
method is used. 

In contrast with the real part of  Z ,  the limit of  the 
imaginary part is independent of the pore shape, as 
can be seen in the case of  a capacitive interface 

l _ j  (40) 
co<<,~rr <<: Z ,  =Ag  

1 1 
Zp = AgRo + 27rr~l jcoCw (41) 

It is seen that for large penetration depths the pore 
wall behaves as a flat surface with area 27rrl and 
specific interface impedance 1 / (jcoCw). Its impedance 
is connected in series with AgR0. It is obvious that 
1/(jcoCw) can be replaced in Equation 41 by an arbi- 
trary specific interface impedance Zw, 

l Zw (42) 
co << ,~  <<: Zp = AgRo 4 27rrl 

An example of  this will be given experimentally and 
theoretically in Part II for a Z w given by the parallel 
combination of a CPE and a resistance. 

To summarize, the pore impedance was calculated 
for different pore forms (Fig. 11), assuming a purely 
capacitive interface behaviour. It is seen that for 
very small penetration depths the pore impedance 
behaves as the impedance of an infinitely deep pore 
(Zp ~ Zoo) resulting in the phase angle - 4 5  °, indepen- 
dent of the pore shape. With decreasing frequency the 
penetration depth of  the a.c. signal increases. In this 
way the pore shape is 'scanned' as a function of pene- 
tration depth. It is seen clearly in Fig. l l (C)  that a 
narrowing (broadening) pore section results in a 
decrease (increase) of  the phase angle, which is 
negative. As a consequence, the phase angle 
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Fig. 11. Comparison of the normalized pore impedances of different 
pore shapes calculated with the matrix method. (A) The pore 
shapes. (B) Nyquist plot. (C) Bode phase plot. 

becomes smaller (larger) than - 4 5  ° for a pore which 
narrows (broadens) at the pore mouth. In the more 
general case of a CPE - 4 5  ° has to be replaced by 
- a 4 5  °, according to Equation 36. This will be illus- 
trated in Part II. Finally, it is seen that the real part 
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of Z ,  becomes a constant for large penetration depths. 
This constant is A t. The imaginary part of Z .  shows 
'fiat surface behaviour',  independent of the pore 
form, since a vertical line in a Nyquist plot is 
connected with purely capacitive behaviour. 

4. Summary and conclusions 

A new method is developed for the calculation of the 
impedance of  arbitrary electrodes containing non- 
cylindrical pores and/or having position-dependent 
impedances. Compared to the recursion method of 
Keiser et  al. [4] for a perfectly conducting electrode 
material the matrix method is more general and has 
the advantage that a transmission line is adopted as 
equivalent circuit for each disc obtained by splitting 
up the pore. This results in a substantial reduction 
of the minimally required number of  discs. As a conse- 
quence curve fitting and impedance simulation time 
are decreased at least 10 times. Meanwhile, a better 
simulation of  the typical behaviour of the pore impe- 
dance at low penetration depths is obtained. 

More general knowledge is provided about the 
impedance behaviour of  noncylindrical pores in per- 
fectly conducting material as a function of the pene- 
tration depth of  the a.c. signal. It is noted that 

uniform pores have the same standardized pore 
impedance provided the pore base is an insulator 
and the interface impedance is a nonpurely resistive 
CPE. Moreover, it is found that a statement of  
Keiser et  al. has to be corrected. The boundary 
value of the real part of the standardized pore impe- 
dance in the case of a capacitive interface is not inde- 
pendent of the pore geometry. As a consequence, a 
geometric constant is introduced and its meaning is 
explained. 
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